
Unit 7: The Periodic Table

Name_____

Class Website: <u>http://pilarz.weebly.com</u>

PS:7 TLW categorize elements of the periodic table according to common properties and explain how elements differ in structural parts and electrical charges of atoms.

History of the Atomic Structure

What is an atom?

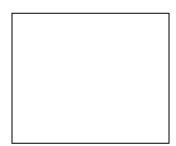
Atom:

Atomic Structure

- Atoms are composed of 2 regions:
 - _____: the center of the atom that contains the ______ of the _____ of an atom
 - _____: region that surrounds the nucleus that contains the ______
 - of the _____ in the atom

- What's in the nucleus?

- The nucleus contains 2 of the 3 subatomic particles:
 - charged subatomic particles
 - ______ (n°): ______ charged subatomic particles
- What's in the electron cloud?
 - The 3rd subatomic particle resides outside of the nucleus in the electron cloud
 - ______ (e-): the subatomic particle with a ______ charge and relatively
- How do these particles interact?
 - ______ and ______ live compacted in the tiny positively charged _______
 accounting for ______ of the ______ of the atom
 - The ______ charged ______ are _____ and have a relatively ______
 but occupy a ______ of space outside the nucleus


How did we figure this out?... The history of atomic structure...

Democritus

- His theory: matter could _____ be divided into smaller and smaller pieces forever, eventually the smallest possible piece would be obtained
- This piece would be
- He named the smallest piece of matter "_____", meaning

John Dalton

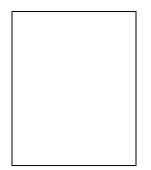
- Elements consist of tiny particles called atoms
 - Looked like tiny _____
- He thought elements all have the same ______

JJ Thomson

- Discovered the with the	
 Electrons in a vacuum 	
- Plum Pudding Model	
Earnest Rutherford	
- Experimented with	
- Discovered that	
 An atom is 	
 There is a in an atom 	
Niels Bohr	
- Atomic theory that is there is a in an atom and that	
orbit around it	
!	

Now we use the _____ model (or _____ model)...

	Indivisible	Electron	Nucleus	Orbits	Electron Cloud
Democritus					
Dalton					
Thomson					
Rutherford					
Bohr					
Wave					


Dmitri Mendeleev

_____ into the periodic table

-

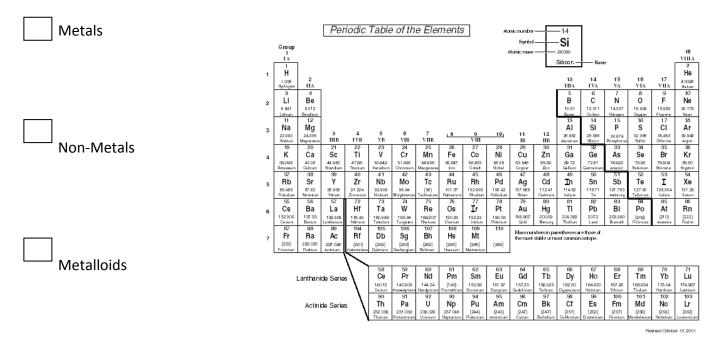
Atomic Structure:

Periodic Table:

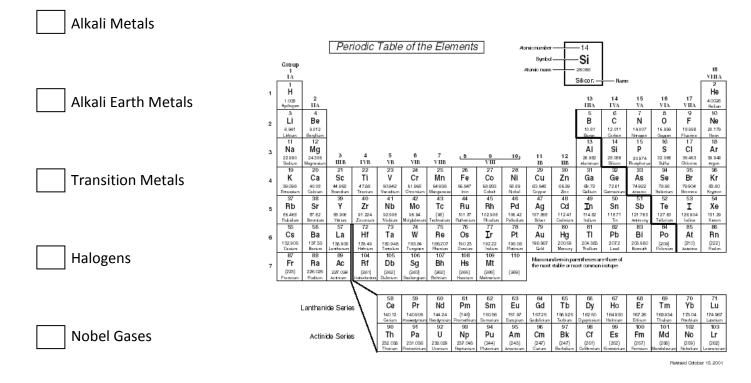
P/N/E Practice for Stable Elements:

Element	Symbol	Atomic Number	Mass number	Number of				
				Protons	Neutrons	Electrons		

Bohr Models:


Lewis Dot Structures:

Periodic Table Basics


Groups:

Periods:

Using the periodic table below... Color the different types of elements, be sure to fill in the key below. Then list brief descriptions of elements that fall into these categories.

Using the periodic table below... Color the different families, be sure to fill in the key below Then list brief descriptions of elements that fall into these categories.

Ions Notes and Practice

Big Idea \rightarrow Elements will gain or lose electrons to become _____, by gaining or losing electrons atoms become _____, atoms with a charge are called _____.

Let's break it down...

What does it mean to be stable?

- To be stable elements must have a _____ _
 - The ______ energy level wants ____ electrons
 - All other will be _____ with _____
- Examples: Stable or not stable? -

What happens with the elections?

- → Quick review remember that ______ and ______ are found in the ______ and have a ______ force holding them together... so I can't mess around with those.
- _____ will be ______ or _____ based on whatever is ______ to have a _ _____ outer shell...
- _

Examples:

What is with the charge?

- There are three types of atoms: ______ (no charge), ______ (positive charge), _ _____ (negative charge)
- Examples:

Let's work through some examples together...

Element	Atomic Number	Bohr Model	Valance Electrons	How many lost or gained to become stable?	What is it's charge?

Applying this to the periodic table...

IA 1 H 100794 3 Li 6941 11 Na	IIA 4 Be 9012182 12 Mg											111A 5 B 10.011 13 A1	IVA 6 C 12.0007 14 Si	VA 7 N 14.09674 15 P	VIA 8 0 15,9994 16 5	VIIA 1 H 1.00794 9 F 10.9964022 17 CI	VIIIA 2 He 4.002602 10 Ne 20.1797 18 Ar
22.989770	24.3054	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.981538	28,0855	30.973768	32,066	35.4527	39.941
19 K 39,0903	20 Ca 40.078	21 Sc 44.95910	22 Ti 47,867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 33.843	27 Co 58.933200	28 Ni 58.0934	29 Cu 63.546	30 Zn 65.39	31 Ga (072)	32 Ge 72.61	33 As 74.9280	34 Se 78.96	35 Br 79.904	36 Kr 85.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr *1.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd	49 In 114.118	50 Sn 118.710	51 Sb 121,760	52 Te 127.60	53 I 126.90447	54 Xe
55 Cs 132,90545	56 Ba 137.327	57 La* 138.9055	72 Hf 17849	73 Ta 180.9479	74 W	75 Re 186.207	76 Os	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 TI 204.3833	82 Pb 267.2	83 Bi 206.99038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac** (227)	104 Rf (251)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (256)	110 Ds (269)	111 Uuu (272)	112 Uub (277)		114 Uug (299) (287)		116 Uuh (289)		118 Uuo (293)
	* Lant serie	hanide s	58 Ce 140.136	59 Pr 140.90763	60 Nd 144.24	61 Pm (145)	62 Sm 159.36	63 Eu 151.964	64 Gd 157.25	65 Tb 158:92594	66 Dy 162.50	67 Ho 164.93032	68 Er 167.26	69 Tm 168.99421	70 Yb 173.04	71 Lu 174.967	
	** Act seri		90 Th 202.030	91 Pa 231.03588	92 U 238.0289	93 Np (237)	94 Pu (244)	95 Am (20)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (250)	102 No (259)	103 Lr (262)	

Isotopes Notes and Practice

An	is an atom th	but a		
		_ compared to other atoms of the	element	
	** If I change the number of	, I change the	I have, so the number	
	of will never c	hange for a particular element		
	**The number of	can change, it's called an		

We can write isotopes two ways (show them both below, be sure to label the mass number and atomic number where applicable)

Isotope Practice

Isotope	Number of Protons	Number of Neutrons	Number of Electrons
Neon – 20			
Strontium - 88			
Sodium – 23			
Boron – 11			
¹⁹ F ⁹			
²⁷ Al ¹³			
⁶⁵ Zn ³⁰			
⁴⁰ Ar ¹⁸			

Chemistry Practice Review: Practice finding the protons, neutrons and electrons for ions and isotopes

Isotopes: Atoms that have the same number of protons and electrons but the number of ______ changes

1. How do you figure out the number of protons for an isotope?

2. How do you figure out the number of neutrons for an isotope?

3. How do you figure out the number of electrons for an isotope?

0-18		
Protons: Neutrons:		
Electrons:		
C-14		
C-14		
Protons Neutror		

lons: Atoms with a _____!

1. How do you figure out the number of protons for an ion?

2. How do you figure out the number of neutrons for an ion?

3. How do you figure out the number of electrons for an ion?

FI ⁻¹	AI ⁺³	N ⁻³
Protons:	Protons:	Protons:
Neutrons:	Neutrons:	Neutrons:
Electrons:	Electrons:	Electrons:
Mg ⁺²	Na ⁺¹	S ⁻²
Mg⁺² Protons:	Na ⁺¹ Protons:	S⁻² Protons:
-		•

The Golden Penny Lab

Purpose: To learn common lab procedures by using lab equipment and to learn about elements by working with some common ones.

Materials: Zinc (Zn) dust, sodium hydroxide (NaOH), pre-1982 penny, tongs, 2 beakers, safety goggles, burner, spoon, forceps (tweezers), hot plate, scale

Procedure:

- 1. Use spoon to put 5 g of zinc dust into beaker.
- 2. Add sodium hydroxide to beaker, just enough to cover zinc.
- 3. Warm the mixture on a hot plate.
- 4. Use forceps (tweezers) to place penny in the mixture.
- 5. Remove the beaker from hot plate, use heat gloves to do so.
- 6. Observe the penny, record any observations below.
- 7. Remove penny from mixture with forceps and clean off in beaker of clean water, dry on paper towel.
- 8. Light the burner, then pick up penny with forceps and hold in flame for a couple of seconds
- 9. Return penny to beaker of clean water to cool off.
- 10. Cut penny with pliers to see inside

Questions:

- 1. What happened when you put the penny in the NaOH and Zn solution?
- 2. What happened when you held the penny to the flame?
- 3. After cutting the penny open, describe what you see.
- 4. Did you turn copper (Cu) into gold (Au)?

Review Sheet – Unit 7 Atomic Theory and Periodic Table Test

Objective: History of the Atomic Theory

- 1. What were the major discoveries of the following scientists?
 - a. Dalton -
 - b. JJ Thomson -
 - c. Rutherford -
 - d. Bohr –
 - e. Mendeleev –
- 2. What is an atom?

Objective: Periodic Table Arrangement

3. Label the families of the periodic table. Transitional metals, metalloids, nonmetals, halogens, alkali metals, noble gases, alkali earth metals. Be prepared to know basic properties of each.

1 H																	2 He
3 Li	4 Be											5 B	⁶ С	7 N	8 0	9 F	10 Ne
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	²⁰ Са	21 Sc	22 Ti	23 V	24 Cr	25 Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	³³ As	34 Se	35 Br	36 Kr
37 Rb	³⁸ Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Тс	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		72 Hf	73 Та	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	⁸⁶ Rn
87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
			57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
			⁸⁹ Ас	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

- 4. Define the following vocabulary words:
 - a. Ductile –
 - b. Malleable -
 - c. Alloy -

Objective: Atomic Structure

5. Draw a picture below of an atom, in your picture label the following: nucleus, electron cloud, protons, neutrons, electrons

- 6. List the three subatomic particles of an atom then describe their size and charge:
 - 1.
 - 2.
 - 3.

- 7. What are valence electrons?
- 8. Using a drawing, depict how many electrons make up each energy level in a Bohr model.

5.	/ issume the ro	nowing are	incution ato		enarge, compre		•••
		Symbol	Atomic	Mass	Protons	Neutrons	Electrons
			Number	Number			
	Oxygen						
	Carbon						
	Calcium						

9. Assume the following are neutral atoms (with no charge, complete the table below).

Objective: Ions and Isotopes

Potassium

- 10. What is an ion?
- 11. What is an isotope?
- 12. How many protons, neutrons and electrons do the following elements have?

	Proton	Neutron	Electron
Carbon - 14			
Oxygen - 18			
Magnesium - 22			
F ⁻			
0 2-			
Mg +2			
C ⁺⁴			
Na ⁺			

				Francium (223)	₹	Cesium 132,91	Cs	85	Rubidium 85,47	Rb	37	Potassium 39.10	~	19	Sodium 22.99	Na	11	Lithium	- •	Hydrogen
				Radium (226)	Ra	Banum 137.33	ва	56	Strontium 87.62	Ş	38	Calcium 40.08	Ca	20	Magnesium 24.31	Mg	12	Beryllium 9.01	Be	`
				Actinium (227)	Ac	138,91	La	57	Yttrium 88,91	4	39	Scandium 44.96	Sc	21						_
				Rutherfordum 178,49	Rf	Hathium 178,49	Ħ	72	Ziroonium 91.22	ç	40	Titanium 47.87	=	22			_			'he F
Thorium	90	Cerium 140.12	B ⁵⁸	Dubnium (262)	B	Tantalum 180,95	ľa	73	Niobium 92.91	NP	41	Vanadium 50.94	<	23		Γ	6.94		ω	Peric
Practinum	91	Pasoodymium 140.91	P 59	Sasborgium (266)	Sg	183.84	٤	74	Molybednum 95,94	Mo	42	Chromium 52.00	ę	24						odic
C C	92	Neodymium 144.24	8	Bohrium (264)	Bh	186.21	Re	75	(98)	Г	43	Manganose 54.94	Mn	25		- Avera		- Eleme	- Atomi	The Periodic Table of the Elements
Nipturium	_	- 22	P ª	Hassium (269)	Hs	190.23	0 s	76	Ruthenium 101.07	Ru	44	86.85	Fe	26		Average Atomic Mass		Element Symbol	Atomic Number	e of
Putonium	94	Samarium 150.36	S B S	Meitnerium (268)	Mt	192.22	₹	77	102.91	Rh	45	Cobuit 58.93	ទ	27		ic Mass		<u>o</u> er		the
Am	95	Europium 151.96	8	Darmatadiium (281)	Ds .	Platnum 195,08	₽	78	Pulludium 106,42	Pd	46	Nickel 58.69	Z	28						Eler
G	96	Gadolinium 157.25	₽₽	Roentgenium (272)	Rg	Gold 196,97	Au	79	Saver 107,87	Ag	47	Copper 63.55	ទ	29						nent
Between	97	Terbium 158.93	5	Copernicium (285)	ŝ	200.59	Hg	80	Cadmium 112.41	G	48	Zno 65.39	Zn	30						S
Californium	8	Dysprosium 162.50	D 66			204.38	Ξ	81	114,82	3	49	Gallum 69.72	Ga	31	Aluminum 26.98	Þ	13	Boron	ω.	7
Ersterium						207.2						0		-r					G.	1
Formium	100	Erbium 167-26	8			208,96	B	83	Antimony 121,76	Sp	51	Arsenic 74.92	As	33	Phosphorus 30.97	P	15	Nitrogen	2	7
Mendelowium	101	Thulium 168.93	69			(209)	Po	84	Tellurium 127,60	Ге	52	Selenium 78.96	Se	34	Sulfur 32.07	S	16	Oxygen 16.00	0	Þ
Nobelum	_					Astatine (210)	At	85	126,90	_	8	Bromine 79.90	Bŗ	35	Chlorine 35,45	ß	17	Fluorine	п.	Þ
	103	Lutefum 174.97	Ч			Radon (222)	Rn	86	Xenon 131.29	Xe	54	Kryptor 83.80	Ş	36	Argon 39.95	Ą	18	Neon 20.18	Ze	

Element Report

You are going to prepare and present a PowerPoint slide show on an element. The report will be done as an election campaign against other elements. Your job is to find facts about the element you signed up for and convince the class that it is more important than the other elements you are running against. 25pts **PowerPoint must include**:

-6-10 slides

-a works cited slide at the end listing all your information sources

-must use some type of transition from one slide to another

-each slide can have no more than 3 points/facts on it

Content:

-Physical description of the element and a picture

-how plentiful, where is it found , use a map

-how useful it is for humans, use pictures to help explain

-two more interesting facts you come across

Set up your presentation with the idea of pointing out how cool, important etc this element is why the class should vote for your element instead of the others. Use catchy slogans, pictures, maps etc.

Due Date:_____

Grading Rubric

Assignment:	Points Possible:	Points Earned:		
1. History of the Atomic Structure	10			
2. Atomic Theory Summary Sheet	5			
3. Periodic Table Basics	5			
4. Ions Notes and Practice	10			
5. Isotopes Notes and Practice	10			
6. Chemistry Practice Review (signed)	10			
7. Review Sheet (signed)	10			
Lab Grades:				
1. The Golden Penny Lab	10			
Element Report:				
1. Presentation Grade	25			