Extra Review Practice – Biology Test Genetics - Key

Mendel fill in the blanks:

Mendel was an Austrian mon				
plants that produced offsprin				
breeding plants. Through bre				
discovered how traits could s	kip _generations	_ and how _	_recessive	_ alleles could get masked.
One of the things Mendel disc	covered was the Law of	fSegrega	tion	. This law states that alleles
of a gene separate from each				
gene is in eachgamete				
Another thing Mendel notice	d is that when he cross	ed neas wit	h two contras	ting forms of the trait, for
example tall vs. short and rou		-		-
inheritance of the other. So the				
Assortment This law states				-
another, for example his tall				
, , , , , , , , , , , , , , , , , , , ,	,			
Generations Pea	Rec	essive	Pure	
Segregation Meio	sis Gan	nete	Inde	pendent Assortment
Monohybrid Crosses and Bas	<u>sics</u>			
Fill in the blanks below:				
Every person has _46 chroi	mosomes that contain	many genes	alleles	are different versions
of a gene and based on which	n ones you inherit certa	in traits will	be expressed	l. The _genotype
of an organism represents its	genetic composition (the alleles y	ou actually in	herit), thephenotype
of an organism reflects all the	traits that are actually	expressed	(what you phy	sically see). You have two
alleles for each trait, if you ha	ive two dominant allele	es you are _	homozygous (dominant, if you
have two recessive alleles you	u arehomozygous re	cessive,	if you have tv	vo different alleles you are
heterozygous In sir	mple genetic problems	someone w	ho is heterozy	gous will show the
dominanttrait			-	
alleles amonohybrid				
studying two genes or traits a		_	_	·
Homozygous Dominant	Alleles		Phenotype	Heterozygous
Dihybrid	Homozygous Recess	sive	Genotype	Dominant
Monohybrid	46			

Create monohybrid crosses that study height in pea plants. Tall pea plants (T) are dominant to short (t) pea plants.

1. Set up a cross between <u>two heterozygous</u> parents. Show the Punnett square below then answer the following questions:

	Т	t
Т	тт	Tt
t	Tt	tt

a. What is the genotypic ratio: 1 TT: 2 Tt: 1 tt

b. What is the phenotypic ratio: 3 tall: 1 short

c. What percent chance will the offspring be tall? 75%

d. What percent chance would the offspring be homozygous dominant? 25%

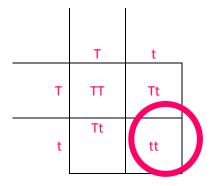
e. What percent change would the offspring be heterozygous? 50%

2. Set up a cross between a heterozygous parent and a homozygous recessive parent. Show the Punnett square below then answer the following questions:

	т	t
t	Tt	tt
t	Tt	tt

a. What is the genotypic ratio: 2 Tt: 2 tt OR 1:1

b. What is the phenotypic ratio: 2 Tall: 2 Short OR 1:1


c. What percent chance will the offspring be tall? 50%

d. What percent chance would the offspring be homozygous dominant? 0%

e. How many different phenotypes are possible between these parents? Two, tall and short

f. How many different genotypes are possible between these parents? Two, Tt and tt

- 3. If two parents are carriers for a disorder, what does that mean about their genotype? What does it mean about the disorder? What is the likelihood that even though they don't express the disorder their child would?
 - If they are carriers they must be heterozygous so if we were using T's... Tt. If they are carriers that means the disorder must be recessive, because if it was dominant then they would just express the disorder... carriers don't express the disorder, just carrier the recessive allele for it so they could potentially pass it on to their offspring. A Punnett square between the parents would look like this...

So that would mean their child would have a 25% chance of having it.

Dihybrid Crosses and Exceptions to Mendel

- When creating a dihybrid cross you are actually studying two traits at once, however offspring
 will only inherit one allele from each parent. If a parent has the following genotype, what are
 the different combinations of that could be passed on to their offspring: DdGg
 Combinations include: DG, Dg, dG, dg
- 2. If tall is dominant (T) over short (t) and Yellow (Y) is dominant over green (y), examine the following cross:

Parental Generation: Male - TtYy x Female - TtYy

	TY	Ту	tY	ty
TY				
Ту	А			
tΥ			В	
ty				

- a. What do the parents look like? They are both tall and yellow
- b. What is the phenotypic ratio of the offspring? 9:3:3:1
- c. What is the genotype of the box with an "A" in it? TTYy
- d. What is the genotype of the box with a "B" in it? ttYY
- 3. Match the following using the word bank below:
 - a. When organisms who are heterozygous show a blended phenotype the trait is Incomplete Dominant
 - b. When organisms who are heterozygous show both forms of a trait Co-dominant
 - c. Controlled by multiple alleles in humans Blood Type
 - d. Color blindness and hemophilia are caused by genes on the X chromosome, so they are - Sex-linked
 - e. Sex linked traits are more likely to be found in what gender Males
 - f. Carriers are people who have this genotype Heterozygous
 - g. If someone is a carrier for a disease, the disease must be Recessive
 - h. When more than one gene controls a trait it is Polygenetic

Co-dominant	Blood type	Sex linked	Polygenetic
Heterozygous	Recessive	Male	Incomplete Dominant

Mutations

- 1. Mark the following as true or false:
 - a. Mutations can be inherited, environmentally caused or happen during replication True
 - b. Everyone has lots of hidden recessive mutations that are not always expressed or harmful True
 - c. Cells have efficient systems for correcting errors to prevent mutations (think G1 and G2 check points in mitosis) True
 - d. Hemophilia, cystic fibrosis and sickle cell anemia are all caused by genes that code for defective proteins True

Pedigrees

- 1. If a trait shows up equally in males and females on a pedigree that means it is most likely what type of trait? Autosomal
- 2. If a trait shows up more often in males than in females on a pedigree that means it is most likely what type of trait? Sex-linked

	type of trait? Dominant			
4.	If a child has a trait on a pedigree but their parents don't or are only half shaded in, it must be what type of trait? Recessive			
5.	In a pedigree where a circle of square is half shaded on that person is a _ Carrier/heterozygous, and if it is fully shaded in that person actually _has the disorder or trait.			
6.	6. Don't forget to practice using the pedigree on the review sheet!			
<u>Vocab</u> ı	ulary			
Gen	etics	This is the study of heredity, aka the unit we are studying		
Here	edity	This is the passing of traits from parents to offspring		
Ge	ne	This is a segment of DNA that carries the instructions for a specific gene/protein		
Mut	ation	A change in a gene due to damage or being copied incorrectly		
Meio	osis	This is the process of creating sex cells, it is also when alleles separate to be passed on to offspring		

3. If everyone who shows a trait on a pedigree has a parent who also shows it, it is most likely what