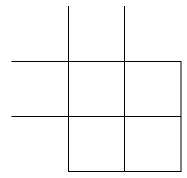

# Extra Review Practice – Biology Test Genetics

## Mendel fill in the blanks:


| Mendel was an Austrian                              | monk who studied gen      | etics primarily u  | sing plants.          | He started with plants  |
|-----------------------------------------------------|---------------------------|--------------------|-----------------------|-------------------------|
| that produced offspring                             | with only one from of a   | trait; these wer   | e called true or      | breeding plants.        |
| Through breeding two p                              | oure plants with differen | t phenotypes, li   | ke tall and short, h  | e discovered how        |
| traits could skip and how alleles could get masked. |                           |                    |                       |                         |
| One of the things Mend                              | el discovered was the La  | aw of              | . This                | law states that alleles |
| of a gene separate from                             |                           |                    |                       |                         |
| eachc                                               |                           |                    | my one unere for a    | particular gene is in   |
|                                                     |                           |                    |                       |                         |
| Another thing Mendel n                              | oticed is that when he    | crossed peas wit   | h two contrasting f   | forms of the trait, for |
| example tall vs. short an                           |                           |                    |                       |                         |
| inheritance of the other                            |                           |                    |                       |                         |
| This law states that the                            |                           |                    |                       | ait of another, for     |
| example his tall pea plar                           | nts didn't always have to | o have round see   | eds also.             |                         |
| Generations                                         | Pea                       | Recessive          | Pure                  |                         |
|                                                     | Meiosis                   | Gamete             | Independ              | lent Assortment         |
| Monohybrid Crosses an                               | d Basics                  |                    |                       |                         |
| Fill in the blanks below:                           |                           |                    |                       |                         |
| Every person has ch                                 | romosomes that contai     | n many genes       |                       | are different versions  |
| of a gene and based on                              | which ones you inherit    | certain traits wil | be expressed. The     | e of an                 |
| organism represents its'                            | genetic composition (tl   | ne alleles you ac  | tually inherit), the  | of an                   |
| organism reflects all the                           |                           |                    |                       |                         |
| for each trait, if you hav                          |                           |                    |                       |                         |
| recessive alleles you are                           | !                         | ر if you have tw   | o different alleles y | ou are                  |
| In s                                                | simple genetic problems   | someone who i      | s heterozygous wil    | I show the              |
| trait beca                                          | ause it masks the recess  | ive allele. When   | studying the inher    | ritance of alleles a    |
| cross inv                                           | olves one trait or gene,  | while a            | cross involv          | es studying two genes   |
| or traits at the same tim                           | e.                        |                    |                       |                         |
| Homozygous Dominant                                 | Alleles                   |                    | Phenotype             | Heterozygous            |
| Dihybrid                                            | Homozygous Re             | ecessive           | Genotype              | Dominant                |
| Monohybrid                                          | 46                        |                    |                       |                         |

Create monohybrid crosses that study height in pea plants. Tall pea plants (T) are dominant to short (t) pea plants.

1. Set up a cross between two heterozygous parents. Show the Punnett square below then answer the following questions:



- a. What is the genotypic ratio:
- b. What is the phenotypic ratio:
- c. What percent chance will the offspring be tall?
- d. What percent chance would the offspring be homozygous dominant?
- e. What percent change would the offspring be heterozygous?
- 2. Set up a cross between a heterozygous parent and a homozygous recessive parent. Show the Punnett square below then answer the following questions:



- a. What is the genotypic ratio:
- b. What is the phenotypic ratio:
- c. What percent chance will the offspring be tall?
- d. What percent chance would the offspring be homozygous dominant?
- e. How many different phenotypes are possible between these parents?
- f. How many different genotypes are possible between these parents?

3. If two parents are carriers for a disorder, what does that mean about their genotype? What does it mean about the disorder? What is the likelihood that even though they don't express the disorder their child would?

#### **Dihybrid Crosses and Exceptions to Mendel**

- 1. When creating a dihybrid cross you are actually studying two traits at once, however offspring will only inherit one allele from each parent. If a parent has the following genotype, what are the different combinations of that could be passed on to their offspring: DdGg
- 2. If tall is dominant (T) over short (t) and Yellow (Y) is dominant over green (y), examine the following cross:

Parental Generation: Male - TtYy x Female - TtYy

|    | TY | Ту | tΥ | ty |
|----|----|----|----|----|
| TY |    |    |    |    |
| Ту | А  |    |    |    |
| tΥ |    |    | В  |    |
| ty |    |    |    |    |

- a. What do the parents look like?
- b. What is the phenotypic ratio of the offspring?
- c. What is the genotype of the box with an "A" in it?
- d. What is the genotype of the box with a "B" in it?
- 3. Match the following using the word bank below:
  - a. When organisms who are heterozygous show a blended phenotype the trait is
  - b. When organisms who are heterozygous show both forms of a trait
  - c. Controlled by multiple alleles in humans
  - d. Color blindness and hemophilia are caused by genes on the X chromosome, so they are
  - e. Sex linked traits are more likely to be found in what gender
  - f. Carriers are people who have this genotype
  - g. If someone is a carrier for a disease, the disease must be
  - h. When more than one gene controls a trait it is

| Co-dominant  | Blood type | Sex linked | Polygenetic         |
|--------------|------------|------------|---------------------|
| Heterozygous | Recessive  | Male       | Incomplete Dominant |

#### Mutations

- 1. Mark the following as true or false:
  - a. Mutations can be inherited, environmentally caused or happen during replication
  - b. Everyone has lots of hidden recessive mutations that are not always expressed or harmful
  - c. Cells have efficient systems for correcting errors to prevent mutations (think G1 and G2 check points in mitosis)
  - d. Hemophilia, cystic fibrosis and sickle cell anemia are all caused by genes that code for defective proteins

### **Pedigrees**

- 1. If a trait shows up equally in males and females on a pedigree that means it is most likely what type of trait?
- 2. If a trait shows up more often in males than in females on a pedigree that means it is most likely what type of trait?
- 3. If everyone who shows a trait on a pedigree has a parent who also shows it, it is most likely what type of trait?
- 4. If a child has a trait on a pedigree but their parents don't or are only half shaded in, it must be what type of trait?
- 5. In a pedigree where a circle of square is half shaded on that person is a \_\_\_\_\_\_, and if it is fully shaded in that person actually \_\_\_\_\_ the disorder or trait.
- 6. Don't forget to practice using the pedigree on the review sheet!

| <u>Vocabulary</u> |                                                                                    |
|-------------------|------------------------------------------------------------------------------------|
|                   | This is the study of heredity, aka the unit we are studying                        |
|                   | This is the passing of traits from parents to offspring                            |
|                   | This is a segment of DNA that carries the instructions for a specific gene/protein |

| <br>A change in a gene due to damage or being copied incorrectly                                             |
|--------------------------------------------------------------------------------------------------------------|
| <br>This is the process of creating sex cells, it is also when alleles separate to be passed on to offspring |